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Abstract 

PHYSLIB is a C++ class library for general use in computational physics applications. It 
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Preface

C++ is the first object-oriented programming language which produces sufficiently effi-
cient code for consideration in computation-intensive physics and engineering applica-
tions. In addition, the increasing availability of massively parallel architectures requires
novel programming techniques which may prove to be relatively easy to implement in
C++. For these reasons, Division 1541 at Sandia National Laboratories is devoting consid-
erable resources to the development of C++ libraries.

This document describes the first of these libraries to be released, PHYSLIB, which de-
fines classes representing Cartesian vectors and (second-order) tensors. This library con-
sists of the header file phys 1ib.h, the inline code file phys 1ib. inl, and the source
file phys 1ib. C.The library is applicable to both three-dimensional and two-dimension-
al problems; the user selects the 2-D version of the library by defining the symbol
TWO_D in the header file phys 1ib.h and recompiling phys 1ib. C and his own code.
Alternately, system managers may wish to provide duplicate header and object modules of
each dimensionality.

This code was produced under the auspices of Sandia National Laboratories, a federally-
funded research center administered for the United States Department of Energy on a non-
profit basis by AT&T. This code is available to U.S. citizens and institutions under re-
search, government use and/or commercial license agreements.

Federal agencies, universities, and other U,S. institutions who wish to support further de-
velopment of this code and its sister codes are encouraged to contact Division 1541, Sand-
ia National Laboratories. Division 1541 welcomes collaborative efforts with qualified
research institutions.

The PHYSLIB library is @ 1991 Sandia Corporation.
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Summary

PHYSLIB defines the following classes:

class Vector Cartesian vectors

class Ten sor Cartesian 2nd-order tensors

class SymTensor Cartesian 2nd-order symmetric tensors

class AntiTensor Cartesian 2nd-order antisymmetric tensors

Methods that are defined for these classes include the following:

Dot and outer products

Cross products for vectors

Other arithmetic operations

Duals (dot or double dot product with the permutation symbol)

Trace of tensors

Transpose of tensors

Determinants and inverses of tensors

Symmetrk and antisymmetric part of tensors

Scalar invariants of tensors

Norms

Colon operator (scalar product of tensors)

Deviatoric part of tensors

9
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Introduction

1. Introduction

Almost every branch of theoretical physics makes use of the concepts of vectors and tew

sors. Vectors are conceptually simple; they are quantities having both magnitude and di-
rection, such as the velocity of a particle. Tensors are conceptually more difficult. They
represent rules that relate one set of vectors to another, and they appear in many physical
formulae.

Division 1541 at Sandia National Laboratories recently began work on a new computer
code, RHALE++, which calculates the behavior of materials subjected to strong shock
waves. The equations describing the physics of strong shocks are vector and tensor equa-
tions. In the past, great effort has been required to correctly translate these equations into
computer code.

This document briefly reviews the mathematics of vectors and tensors; discusses the basic
difficulties in translating vector and tensor equations into computer code; and describes
how a new and very promising computer language, C++, has been used to alleviate these
difficulties, thereby producing reliable, reusable, and transparent computer code at a much
reduced cost in programmer effort.

1.1 Vector and Tensor Operations and Notation

We briefly review the basic concepts and language of vectors and tensors. A more com-
plete discussion can be found in [2].

1.1.1 Vectors

A vector is a physical quantity such as velocity that has both a magnitude (“five hundred
krn/see”) and a direction (“towards the northeast”). It may be written as a lowercase sym-
bol with an arrow over it, such as t. Quantities such as temperature or mass that have
magnitude but no direction are called scalars and are represented by lowercase symbols
without an arrow, such as u.

The magnitude or norm of a vector ~ is written as Iiil and is a scalar, while its direction
may be written as a. The direction of a vector is itself a vector with magnitude 1 (called a
unit vector).

A vector may be multiplied by a scalar. The result is a vector with the same direction as
the original vector and with a magnitude equal to the product of the scalar and the magni-
tude of the original vector. That is,

if ; = c; then Iil = ICI 121 and L = f~ (1)

If c <O, the resulting vector has the opposite direction from the original vector.

11



Introduction

Vectors may be added to or subtracted from each other; they obey the same algebraic rules
as real numbers under addition and subtraction. Vector addition may be visualized by pic-
turing each vector as an arrow with a length equal to its magnitude, as illustrated below:

Figure 1. Addition of Vectors

A

The opposite of a vector is a vector with the same length but in the opposite direction.

Vectors may not be multiplied in the same sense as real numbers. However, several opera-
tions exist which are distributive and which are therefore spoken of as “products”, The in-
ner product (or dot product) of two vectors is a scalar and is written

;Wi (2)

It is defined as the product of the magnitudes of the two vectors and the cosine of the angle
between them, that is,

a.; = Ialltlcoseab. (3)

Thus, the dot product is zero if the vectors are perpendicular. The dot product is distribu-
tive and commutative, that is,

. .
a. (b+:) =a.b+a.: (Distributive Lmw) (4)

;o~+; (Commutativelaw) (5)

The outer product of two vectors is a tensor; it is discussed below.

1.1.2 Tensors

A tensor is a rule that turns a vector into another vector, and it is represented symbolically
by a boldface capital letter, such as A. We write

12



Introduction

to indicate that when the tensor A is applied to the vector ~, it returns the vector ii. Not all
rules that turn vectors into other vectors are tensors; a tensor must be linear, that is, it must
be true for all ii, ~, and c that

and

A (L@ = (:Ah.

It is customary to regard

(8)

the vector h in Equations (6) as the product of the tensor A and
the vector ~. We say that the vector ~ is lejt-rnukiplk?d by the tensor A , It is also possible
to write expressions of the form

?=~A (9)

in which the vector ; is right-multiplied by the tensor A . If

A;=;B (lo)

for all vectors ~, we Mythat A is the (ranspose of B and write

A = BT. (11)

Tensors may be added and subtracted according to the usual algebraic rules, Addition is
defined such that

A=B+C iff A;=B~+Cb forall~ (12)

The product of two tensors is defined such that

A =BC iff A;= B(C6) foralt ~ (13)

The outer product of two vectors is a tensor and may be written

A=it?Jt (14)

It is defined by

A=ti8~ iff Ai= (~~~)ii forall L

Note that the outer product is not commutative, unlike the inner produc~ since

a@;= (b@a)T (16)

Many derived quantities in physics are expressed as tensors. For example, we observe in
the laboratory that a reflective surface exposed to a set of light sources feels a force which
depends on the orientation and area of the surface. lf we form a vector i whose magnitude

(15)

13
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is equal to the surface area and whose direction is perpendicular to the surface, we find
that the force experienced by the surface is given by

]=p; (17)

where P is a tensor (the radiation pressure tensor) which depends only on the intensity and
location of the light sources relative to the location of the reflective surface.

Likewise, consider a body subjected to deformation. Let the displacement between two
nearby particles in the undeformed body be represented by the vector ii and the displace-
ment between the same two particles after deformation be represented by the vector;’.

The two vectors are related by the expression

~’ = J; (18)

where J is called the Jacobian tensor, We note that J may be different at different points in
the body.

1.1.3 Symmetric and Antisymmetric Tensors

Many tensors important in physics are symmetric;

AT=A

that is,

(19)

Likewise, there are important tensors which are antisymmetric, having the propefiy

AT=–A. (20)

If a tensor is known to have one of these symmetry properties, calculations involving that
tensor can usually be simplified. In addition, it is sometimes useful to split a full tensor
into symmetric and antisymmetric parts via the formulae

Sym(A) = ~ (A +AT) (21)

Anti(A) = ; (A -AT) (22)

lt is easily verifieclthat these two tensors have the indicated symmetry properties and that
A = Sym(A)+Anti(A).

1.1.4 Vector and Tensor Components; Indicial Notation

Computers a_reunable to handle vectors and tensors directly. Their hardware is designed to
add, subtract, multiply, and divide representations of real numbers,

Fortunately we can represent vectors and tensors as sets of real numbers. However, to do
so, we must establish an arbitrary ~rmne Ofre~erence. We do this by selecting three mutual-

14
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ly orthogonal directions i, j, and z. These correspond to the x, y, and z axes of a Cartesian
coordinate systelm. We can then express any vector in the form

The three numbers al, az, and a3 (the components of the vector) are real numbers and can
be processed by a computer, Using Equation (23), we can represent any vector operation
as a sequence of operations on sets of real numbers. We use the symbol aj to represent the
set of real numbers u,, a2, and u,.

Some computers are optimized to perform calculations on sets of real numbers; computer
scientists refer to these as vector computers, but the word “vector” is not being used in the
sense understood by physicists.

We can write any tensor in the form

Thus, a computer can treat a tensor as if it was an array of nine real numbers. These real
numbers are spoken of as the components of the tensor. We represent this set of numbers
by the symbol Aij.

We thus have a way to handle vectors and tensors on computers, but at a price: we must re-
place each vector and tensor by a set of real numbers and each vector or tensor operation
by a (possibly extensive) sequence of operations on sets of real numbers. This sequence of
operations is written using indicial nolation, For example, the inner or dot product of two
vectors is written in symbolic notation as

r=~.t. (25)

It can be written in indicial notation as

3

r=
x

aibi. (26)
i=l

where ai and bi are the components of the vectors ii and ~. Proofs of the equivalence of

the symbolic and indicial representations of vector operations will not be presented in this
report.

1.1.5 Einstein Summation Convention

Sums over all values of an index, such as Equation (26), are so common that it is custom-
ary to adopt the Einstein summation convention. Under this convention, any term in which

15
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an index is repeated, such as aibi, is interpreted to mean a sum over all values of the index
i. That is,

3

aibi (Einsteinconvention) e z aibi (ordinaryusage)
i=[

If more thanone index is repeated, we have a multiple sum, e.g.,

33

a#ijcj (Einsteinconvention)e ~ ~ aillijcj(ordinaryusage).

(27)

(28)
i=l j=l

We use the Einstein summation convention throughout this report.

1.1.6 Dimensionality

Physical space is three-dimensional, and the foregoing discussion reflects this fact. How-
ever, there are many physical situations where a high degree of spatial symmetry permits a
simplified treatment of vector and tensor calculations. RHALE++ therefore has been writ-
ten in 2-D and 3-D versions. IrI the 2-D version, one assumes either plane symmetry or
axisymmet7y.

Plane symmetry represents the case in which there is perfect translational and reflective
symmetry along the ? direction. Axisymmetry is the case in which rotational and reflective
symmetry exists around an axis in the ; direction. In either case, certain components of
tensors are guaranteed to be zero in the calculations performed by RHALE++ and similar
programs.

To take advantage of this, the PHYSLIB library can be setup for either normal 3-D calcu-
lations or 2-D calculations. To set up PHYSLIB for 2-D calculations, one defines the mac-
ro TWO_D at the start of the file phys 1ib.h;tosetup for 3-D calculations, this macro is
left undefined.

The librarycode contains compiler directives that test this macros and compiles different
portions of the code depending on whether the macro is defined. Thus, when a 2-D pro-
gram is being compiled, the tensor components that are guaranteed to be zero can be omit-

ted, savingmemory and computationtime,

In addition, an integer constant, DIMENSION, is set to the number of dimensions (2 or 3).

16
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1.2 Object-Oriented Programming and the C++ Language

One of the characteristics of computational physics programs is their growing complexity.
It is not now uncommon for a production code to exceed one hundred thousand lines in
length when written in traditional programming languages such as FORTRAN. Such huge
codes are also found in the areas of advanced graphics and operating systems.

Large codes are extremely difficult to manage. To alleviate this problem, one has to rely
on a coherent, well-organized programming style. Programming style includes techniques
that do not change the basic calculations performed by a program and which might not
even alter the machine language translation.

The most obvious element of style is the incorporation of comnwnr.s and indention. Com-
ments are sections of text that the compiler is instructed to ignore, but which convey clari-
fications and explanations to a human reader. Good programmers make extensive use of
commenting, especially in older languages; it is not uncommon for a well-written FOR-
TRAN program to consist of 509Z0comment lines. Indention is the intelligent use of white
space (blanks, tabs, and empty lines), which are ignored by the compiler, to indicate pro-
gram structure. It is also an important feature of good FORTRAN coding, where indention
helps delineate the structure of DO loops and IF-THEN constructs.

Unfortunately, commenting and indenting alone are not sufficient to render a code trans-
parent to the human reader. Modern programming languages therefore include grammar
that facilitates block-structured programming. Block-structrued programs are broken
down into logical units, each of which is relatively easy to understand. For example, itera-
tiveloops are written nowadays using a specific grammar that indicates that the loop is a
logical unit, GOTO statements are generally avoided, since they tend to blur the bound-
aries of logical units. An important part of block-structured programming is the care with
which the programmer breaks the code down into relatively small subroutines, each of
which is easy to understand, and builds a tree of subroutine calls to implement his algo-
rithm.

Block-sb-uctured programs maybe written either in a top-down or a bottom-up fashion. In
top-down programming, one writes a program at the top level first, using calls to as-yet
nonexistent subroutines to represent major parts of the calculation; the first level of sub-
routines is then written the same way, writing each subroutine as a sequence of calls to
lower-level subroutines, and so on. In bottom-up programming, one builds the lowest-lev-
el subroutines first, then combines these into somewhat higher-level subroutines, and so

on, Both approacheshave their merits.

The most recent trend in programming style is towards object-oriented programming.
Conventional computers are sequential; a single processor steps through a program, carry-
ing out one task at a time. Programs written in traditional programming languages there-
fore support the model of a program as a sequence of tasks. This is known as procedural
programming, because a sequence of procedures is being carried out,

17
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Modern supercomputers are not purely sequential. In particular, vector processors such as
Cray or Convex supercomputers process entire blocks of data in an assembly-line fashion.
Massively parallel computers such as MIMD machines have many processors which can
operate independently. For such computers, the sequential model is not ideal. Instead, one
uses an object-oriented approach in which the program is though of as a set of interacting
data objects. This approach has proven to be fruitful even on traditional sequential com-
puters. It seems to mesh well with the concept of block-structure programming; not only is
code divided into logical units, but so is data. Closely related to the concept of object-ori-
ented programming is the concept of data abstraction. This is the notion that a data struc-
ture should be treated as a coherent unit wherever possible, with only a few routines
accessing its individual components.

C++ is the first efficient high-level language with object-oriented capability to become
widely popular. Because well-written C++ code approaches the efficiency of conventional
C coding, C++ may prove to be the language of choice for large scientific computing
projects. A description of the C++ language is beyond the scope of this report. However,
we briefly describe the advantages of C++ below.

The definitive feature of C++ is the class [1]. This is essentially a programmer-defined
data type that supplements the standard data types (such as int, flost, or doub 1e)that
are part of the language. A class is dw~ared, usually in a header file, at which time the
compiler knows its characteristics; individual variables or instances of the class may then
be declared by the programmer.

1.2.1 Data Abstraction

A class declaration typically includes data members and specifies member access rules.
The data members are a set of floating numbers, integers, pointers, or instances of simpler
classes. For example, a class representing complex numbers would probably contain two
floating variables as data members: one for the real and one for the imaginary part of the
complex number. Each time a variable of a given class is declared, enough memory is set
aside to hold its data members.

Classes enforcedataabstraction.Generallyspeaking,thedatamembers ofa classaredi-
rectlyaccessibleonlytoa setoffunctionsenumeratedwithintheclassdefinition.These
functions are the only place where an instance of a class is not viewed as a coherent object.

The PHYSLIB library is built around the concept of data abstraction.

1.2.2 Special Member Functions and Dynamic Memory Management

The special member functions of a class are utility functions that create, destroy, or assign
values to an instance of a class. Thus, whenever a class variable is declared, a conshuctor
function is called to initialize the object. Likewise, when a class variable goes out of scope
and is no longer needed, a destructor is called to do any necessary cleanup before its mem-
ory is freed. This makes it possible to carry out sophisticated dynamic memory manage-
ment in a transparent manner. For example, a large array of floating numbers can be
represented by a class with constructor and destructor functions. The constructor func-
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tions, which are automatically called when a variable of the array class is declared, can al-
locate the appropriate amount of memory. The destructor, which is automatically called
when the variable goes out of scope, can return the memory to the system. The program-
mer sees none of this; he only writes a constructor and des~uctor function, and the compil-
er sees to it that they are called at the appropriate times.

PHYSLIB does not make use of such memory management mechanisms, but future re-
ports will discuss how memory management is carried out in more sophisticated classes
used in RHALE++.

If a class has no constructor functions, the compiler simply allocates memory for the data
members whenever an instance of the class is declared. Likewise, if a class has no destruc-
tor function, the compiler simply frees the memory allocated for an instance of a class
when it goes out of scope.

Other special member functions may be declared to assign values to an object. For exam-
ple, an instance of an array class would need to free its old storage area before allocating
new memory to receive a new value. If no assignment function is declared for a class, the
compiler simply copies the values of all the data members when an assignment is made.

1.2.3 Function and Operator Overloading

When data abstraction is implemented in less sophisticated programming languages, the
code tends to dissolve into many calls to a few privileged routines that manipulate individ-
ual components of the various data structures. Many of these routines implement distinct
operations on the data structures that could just as well be represented by arithmetic oper-
ators. For example, if data structures representing complex numbers are used in a C pro-
gram, there will be many calls to functions that implement complex addition and
multiplication.

The C++ language permits programmers to overload the standard set of operator symbols.
For example, the programmer can declare that the ‘*‘ operator represents complex multi-
plication when applied to complex variables. This adds a new context-dependent meaning
to this symbol. The compiler can distinguish whether the ‘*‘ represents ordinary floating-
point multiplication or complex multiplication by examining the type of its operands.

When an overloaded operator is used in this manner, the compiler replaces it with a call to

the appropriate function defined by the programmer. Thus, the actual machine code gener-
ated is not much different than that described above for a C program. However, the code

the programmer writes is much more aesthetically pleasing; and, when another program-
mer is trying to read and understand the code, aesthetics is everything.

The C++ language permits programmers to overload function names as well as operators.
Every function declaration includes the argument list, as with ANSI C. However, more
than one function with a given name can exist if they have different argument lists. When
one of the functions is called, the compiler selects the correct function based on the types
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#

of the arguments. If a function call has an argument list that does not match any function
by that name, the compiler reports an error.

Consider this example of a C code:

#include <math. h>

#include “complex. h“

main( ) {

struct Complexa = {3. , 2.5}, b= {2. , 0.}, c;

c = CSqrt(CAdd (CMult(a, a) , CMult(b, b) ) ) ;

fprintf (“The result is %f, %f\n”, c.Real, c. Imag) ;

1

This short program evaluates and ptits a complicated complex expression. Note the many
function calls needed to implement data abstraction.

In C++ one might have

#include <math. h>

#include “complex. h“

maino{

Complex a(3. , 2.5), b(2. , O.), c;

c = sqrt(a*a + b*b) ;

fprintf (’’The result is %f, %f\n”, c.Realo, c.Image);

}

This illustrates how the function calls have been replaced by more transparent operator
notation. The actual machine code generated by the compiler replaces the operators with
the appropriatefunction calls. In addition, the sqrt ( ) function has been overloaded;the
two versions are double sqrt (const double) and Complex sqrt (const
Complex ).The first version takes and returns floating point numbers, while the second
takes and returns complex numbers. In the program above, the second version has been
used, which the compiler correctly recognizes horn the fact that a*a + b *b k an ex-

pression with type Complex.
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2. The PHYSLIB Library

The PHYSLI13 library consists of three files: a header file, phys 1 lb. h, an fine func-
tion file, physlib. inl; and a C++ source file, physlib. C.

The header file contains C++ code that defines the four classes described below. It must be
included at the start of any C++ program that wishes to use these classes. The header file
in turn includes the inline function file, which contains additional C++ code to define the
various operator overloads and methods that are defined for the P*SLIB classes. The
source file contains a few large functions that are not appropriate for inlining, and it is
compiled and linked with the users’ code.

Inlining is a way to reduce computation time at the cost of increased memory usage. An
inline function is not actually called whenever it is referenced; instead, a local copy of the
function body is inserted in the calling routine by the compiler. ~s eliminates the over-
head associated with making a function call and permits global o@i@izati&s (such as
vectorization) that are normally inhibited by function calls. The tr@e-off is that there are
numerous local copies of the function in the code rather than one global copy. If the func-
tion is very simple and is called many times, as is usually the case for PHYSLIB func-
tions, the savings in computation time are worth the increase in memory usage.

In each case, the reference frame is implied by the values used to initialize the vectors and
tensors in a calculation. In addition, it is assumed that all floating numbers are represented
in double precision. This is wweful on intrinsically double-precision machines such as a
Cray; the Criay version of the library will replace double withflost everywhere.

2.1 class Vector

This class represents Cartesian vectors, which are quantities having both magnitude and
direction.

Symbolic Notation: 6 Indiciai Notation: ai

2.1.1 Private Data Members

double x; X component of vector (al)

double y; Y componentof vector (a2)

double z; Z componentof vector (UJ

The Z component is required even in the 2-D version of the library. This is because
RHALEH and some other finite element codes use a rotation algorithm hat requires vec-
tors with Z components,
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2.1.2 Special Member Functions

Vector (void) ;

Samp[e code:

Vector a; // Default constructor called

// when a is declared

This isthedefault constructorforinstances ofthevector class. Itdoes nothing
to initialize the vector. It is declared only to let the compiler know that initializa-
tion can be skipped.

Vector(const double, const double, const double) ;

Sampleco&:

Vector a(5., 6., 2.);

Constructavector with the given components.

Vector(const Vector&);

Samplecode:

Vector a;

Vector b = a; // Construct and initialize

Thisisthecopyconstructorforobjectsofcla,ssVector.Itisdefinedmainlytoen-
hancevectorization on CRAYcomputers.

Vector& operator=(const Vector&);

Sample code:

Vector a, b;

a=b;

ThisistheassignmentoperatorforobjectsofclassVector.ltisdefinedmainlyto

enhancevectorizationonCRAYcomputers.

double X(void) const;
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Symbolic notation: t ● 1 lndicial notation: al

Samp!e code:

Vector a;

print f( ’’The X component of a is %f\n”, a.X());

double Y(void) const;

Symbolic notation: h wj Indicial notation: az

Sump[e co&:

Vector a;

printf(’’The Y component of a is %f\n”, a.Y()) ;

double Z(void) const;

Symbolic notation: ii.? Indicial notation: a~

Sample co&:

Vector a;

printf(’’TheZ component of a is %f\n”, a.Z()) ;

void X(const double) ;

Symbolic notation: None Indicial notation: al +s

Sample code:

Vector a;

a.X(2.); // set X component of a to 2.

void Y(const double) ;

Symbolic notation: None lndicial jwtution: az+s

Sample code:

Vector a;

23



The PHYSLI13 Library

a. Y(2 .); // set Y componenz of d to 2.

void Z(const double ).;

Symbolic notation: None Indiciai lwtation: Ul+s

Sample co&:

Vector a;

a. Z(2 .); // set Z component of a to 2.

Provide accessto the componentsof avector. his isrequired chieflyforI/Obut
is also ameansfor letting future classes work with vectors without requiring a
huge list of friend functions in the vector class definition. [t does not violate the
idea of data abstmction, since nonpnvileged functions must still access the com-
ponents of a vector through a functional interface.

2.1.3 Utility Functions

int fread (Vector&, FILE*) ;

int fwrite (const Vector, FILE*) ;

int fread (Vector*, int, FILE*) ;

int fwrite(const Vector*, const int, FILE*) ;

Sump\e code:

Vector a, b, c[2], d[51;

FILE* InFile, Out File;

fread (a, InFile) ;

fread (c, 2, InFile) ;

fwr~te (b, Out File) ;

fwrite (d, 5, OutFllej;

~eseoverloads provide auonvenient intefidce tothefread() and fwriteo
Iibrary functions for binaryinput/output. The second version ofeach is intended
forarrays ofvectors (e.g., Veckor c[2] ; declares an array of two vectors),

These functions were written to be as consistent as possible with the standard
freado and fwriteo functions.Thus,theyare.friendsratherthanmember
functions,andtheintegerreturned is the number of objects read or written.

24



The.PWSLIB Library

2.2 class Tensor

This class represents general Cartesian 2nd-order tensors. In the 2-D version, the off-diag-

onal z-S A13,A13,All, and An = omitted. me ~agonal z @M4 A3v is n~ed in 2-D
finite element codes,

Symbolic notation: A Indicial rwkztion: Ail

2.2.1 Private Data Members

double xx;

double xy;

double xz;

double yx;

double yy;

double yz;

double zx;

double zy;

double zz;

xx component of tensor (A,, )

xy component of tensor (A,Z)

xz component of tensor (A ,3)

yz component of tensor (Azl)

yy component of tensor [Az)

yz component of tensor (Az,)

zx component of tensor (A31)

zy component of tensor (A32)

zz component of tensor (AJ~)

2.2.2 Special Member Functions

Tensor (void) ;

Sampleco&:

Tensor a; // Declare an uninitialized

// tensor.

Default constructor for instances of the Tensor class.

Tensor (const double, const double, const double, const

double, const double, const double, const double,

const double, const double) ;

Sample code:
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Tensor a(2. , 3., 5.,

4 6., 4.,.1

1 9., 11.);-t

Construct a tensor with the given components. The arguments corresponding to
off-diagonal z ten-m are omitted in the 2-D version,

Tensor (const Tensor&) ;

Sample co&:

Tensor a;

Tensor b = a; // Construct and initialize

ThisisthecopyconstructorforobjectsofclassTensor.Itisdefinedmainlytoen-

hance vectorization on CRAY computers,

Tensor& operator= (const Tensor&) ;

Sample code:

Tensor a, b;

a=b;

Thisisthe assignment operator for objects of class Tensor. It is defined mainly to
enhance veztorization on CIWY computers.

Tensor (const SymTensor) ;

Tensor (const AntiTensor) ;

Sample co&:

SymTensor a;

AntiTensor b;

Tensor c = a, d = b;

Convert a symmetric or antisymmetric tensor to full tensor representation. These
operators become standard conversions that the compiler invokes implicitly
where needed. However, most operators are explicitly defied for mixed tensor
types, since this is more efficient.
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These conversions are somewhat dangerous, since useless operations such as
Trans (SymTensor ) orTr (AntiTens or) willbeacceptedbythecompiler.
The worstconsequenceofpermittingtheseconversionsisthatoperationssuch as
Inverse (AntiTensor ) willbe attemptedandresultina singular matrix er-
ror. The RHALE++ development team felt that, since these conversions are so
natural, they should be included in PHYSLIB in spite of the potential dangers.

Tensor& operator= (const SymTensor) ;

Tensor& operator= (const AntiTensor) ;

Sample co&:

SymTensor a;

AntiTensor b;

Tensor c, d;

c=a;

d=b;

Assign a symmetric or anti symmetric tensor value to a preexisting tensor vari-
able. If these operations were not defined, the compiler would call the conversion
constructors defined above and assign the result, which is less efficient than as-
signing the values directly,

double XX (void) const ;

Symbolic notation: 2A~ Indicia! notation: A,,

Sample co&:

Tensor A;

printf (“The XX component of A is %f “, A. XX() );

double XY (void) const;

Symbolic notation: iA ~ Indicial notation: A ,Z

Sample couk:

Tensor A;
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printf ( “The XY component of A is %f”, A.XY( ));

double XZ (void) const;

Symbolic notation: ?A 2 Indicial notution: A,B

Sample co&:

Tensor A;

prlntf(’’The XZ component of A is %f”, A.XZ());

double YX(void) const;

Symbolic notation: jAi

Sample code:

Tensor A;

printf(’’The YX component of A is %f”, A.YX()) ;

double YY(void) const;

Symbo[icnotation: fAj Indicidt iotutiw :A22

Indicial notation :A21

Samp[ecode:

Tensor A;

printf(’’The YY component of A is %f”, A.YY());

double YZ(void) const;

Symbolic notation: 5A? Itldil’idl notution: A2J

Samplecode:

Tensor A;

printf(’’The YZ component of A is %f”, A.YZ()) ;

double ZX(void) const;
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$m.bolic notation: fAl Indicial notation: AJL

Sample co&:

Tensor A;

printf (“The 2X component of A is %f”, A. ZX() );

double ZY(void) const;

Symbolic notation: ?Aj Indicial notation: An

Sarnpkc ode:

Tensor A;

printf(’’The ZY component of A 1s %f”, A.ZY());

double ZZ(void) const;

Symbolic notation: 2A? Indicial notation: Ay~

Sample code:

Tensor A;

printf(’’The ZZ component of A is %f’, A.ZZ());

void XX(const double) ;

Symbolic notation: None Indicial notation: A,1+s

Sampleco&:

Tensor A;

A.XX(3.); II Set XX component of A to 3.

void XY(const double) ;

Syrnbolicnotation :None Indicial notation: A~z+s

Sample code:

Tensor A;
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A. XY(3 .); // Set XY component of A to 3.

void XZ(const double) ;

Symbolic notation: None Indicial notation: A1~+s

Sample co&:

Tensor A;

A.XZ(3. ); // Set XZ component of A to 3.

void YX(const double) ;

Symbolic notation :None

SampLeco&:

Tensor A;

A.YX(3. );

Indicial notation: Azl i-s

// Set YX component of A to 3.

void YY(const double) ;

Symboknutation: None Indicia\ notation: AZ +s

Sampleco&:

Tensor A;

A.YY(3.);

void YZ(const double) ;

Symbolic notatwn: None

// Set YY component of A to 3.

Indicial notation: Am +s

Sample co&:

Tensor A;

A.YZ(3.); // Set YZ component of A to 3.

void ZX(const double) ;

Symbolic rwtution: None Indiciainotation :A31+s
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Sample cotk:

Tensor A;

A. ZX(3 .); // Set ZX component of A to 3.

void ZY(const double) ;

Symbolic notation: None Indicial notation: A32+s

sampk?co&:

Tensor A;

A.ZY(3.); // Set ZY component of A to 3.

void ZZ(const double) ;

Symbolic notation: None Indicial notation: ABJ+s

Samplecode:

Tensor A;

A.ZZ(3.); // Set ZZ component of A to 3.

Provide access to components of a tensor through a functional interface. The
functionscorrespondin gtooff-diagonalz termsdo notexist inthe2-Dversion of
the library, since these components always vanish in 2-D finite element codes.

2.2.3 Utility Functions

int fread(Tensor&, FILE* );

int fwrite (const Tensor, FILE*) ;

int fread (Tensor*, int, FILE*) ;

int fwrite (const Tensor?, const int, FILE*);

Sample co&:

Tensor a, b, c[2], d[5];

FILE* InFile, OutFile;

fread (a, InFile);

fread (c, 2, InFile);
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fwrite (b, OutFile);

fwrite (d, 5, OutFile);

These overloads provide aconvenient interface tothefread() and fwriteo
library functions for binary input/output.

These functions were written to be as consistent as possible with the standard
fread () and fwri te () functions.Thus,theyarefriendsratherthanmember
functions,and the integer returned is the number of objects read or written.

2.3 class SymTensor

This class represents symmetric tensors. By providing a separate representation of sym-
metric tensors, we save both memory and computation time, since a symmetric tensor has
fewer independent components. Since symmetric tensor are simply a special case of gen-
eral tensors, they share the same notation and operations.

Symbo!ic notation: A Indicia! notation: Aij

2.3.1 Private Data Members

double xx;

double xy;

double xz;

double yy;

double YZ;

double zz;

xx component of a symmetric tensor (A,1)

xy component of a symmetric tensor (J412= Azl)

xz component of a symmetric tensor (A,3 = A~1)

yy component of a symmetric tensor (Az)

yz component of a symmetric tensor (A23 = An)

zz component of a symmetric tensor (A33)

2.3.2 Special Member Functions

SymTensor (void) ;

Samplecode:

SymTensor a; // Construct an uninitialized

/ / SymTensor.
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Default constructor for instances of the class SymTensor.

SymTensor (const double, const double, const double,

const double, const double, const double) ;

Sumpk code:

SymTensor a(l., 5., 3.,

4 6.,.t

5.);

Construct asymmetric tensor with the given components. The arguments corre-
sTonding tooff-diagonal zcomponents are omitted in the2-D version.

SymTensor (const SymTensor&) ;

Samplecode:

SymTensor a;

SymTensor b = a; // Construct and initialize

ThisisthecopyconstructorforobjectsofclassSymTensor.ltisdefinedmainly

toenhancevectorizationon C3WY computers.

SymTensor& operator= (const SyrnTensor&) ;

Sample code:

SymTensor a, b;

a=b;

This is the assignment operator for objects of class SymTensor. It is defined
mainly to enhance vectorization on CRAY computers.

double XX(void) const;

Symbolic notation: 1Af Indicial notation: A,1

Sample code:
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SymTensor A;

print f( ’’The XX component of A is %f”, A. XX()) ;

double XY(void) const;

Symboh_cnotation: 2Aj Indicialnotation: Alz

Sample code:

SymTensor A;

printf(’’The XY component of A is %f”, A.XY()) ;

double XZ(void) const;

Symbolicnotation: 3Af Indicial notation: A,3

Sample code:

SymTensor A;

printf(’’The XZ component of A is %f”, A.XZ());

double YY(void) const;

symbolic rwtatwn: 9A J Indiciai notation: AZ

Samplecode:

SymTensor A;

printf(’’The YY component of A is %f”, A.YY());

double YZ(void) const;

Symbo!icnofation:jAi lndiciafnotation:An

Sample code:

SymTensor A;

printf(’’The YZ component of A is %f”, A.YZ());
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double ZZ (void) const;

Symbolic notation: 2A2 Indicial notation: AJB

samplecode:

SymTensor A;

printf(’’The ZZ component of A is %f”, A.ZZ()) ;

void XX(const double) ;

Symbolic notation: None Indicial notation: A,1 +s

Sampleco&:

SymTensor A;

A.XX(3. ); // Set XX component of A to 3.

void XY(const double) ;

Symbo[icnotation: None Indicial notation: A~z+s

Sample code:

SymTensor A;

A.XY(3.); // Set XY component of A to 3.

void XZ(const double) ;

Symbolicnotation: None Indicial notation: A13+s

Sample code:

SymTensor A;

A.XZ(3.); // Set XZ component of A to 3.

void YY(const double) ;

Symbolic notation: None Indicial nottltion: Ani-s

Sample code:
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SymTensor A;

A. YY(3 .); // Set YY component of A to 3.

void YZ(const double) ;

Symbolic notution: None Indicialnotution :AZB+S

Sampieco&:

SymTensor A;

A.YZ(3. ); // Set YZ component of A to 3.

void ZZ(const double) ;

Symbolic notation :None Indicial notation.: ABBi-s

Sample code:

SymTensor A;

A.ZZ(3. ); // Set ZZ component of A to 3.

Provide accessto components ofa symmetrkt ensor through a functional inter-
face. The functions corresponding tooff-diagona] ztermsdo notexist inthe 2-D
version of the library, since these components always vanish in 2-D finite ele-
mentcodes.

2.3S Utility Functions

int fread (SymTensor&, FILE* );

int fwrite (const SymTensor, FILE*) ;

int fread(SyrnTensor*, int, FILE*) ;

int fwrite(const SymTensor*, const int, FILE*) ;

Sample code:

SymTensor a, b, c[2], d[5];

FILE* InFile, OutFile;

fread (a, InFile);
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fread (c, 2, InFile);

fwrite (b, OutFile) ;

fwrite (d, 5, OutFile);

These overloads provide aconvenientinterface tothefread() and fwriteo
library functions for binary input/output.

These functions were written to be as consistent as possible with the standard
fread () and fwrite () functions. Thus, they are friends rat-her th~ memk

functions, and the integer returned is the number of objects read or written.

2.4 class AntiTensor

This class represents anti symmetric tensors, By providing a separate representation, we
save quite a lot of memory and computation time. Since antisymmetric tensors are a spe-
cial case of general tensors, the notation and operators are identical.

symbolic notation: A Indicial notation: Aij

2.4.1 Private Data Members

double xy; xy componentofthetensor (A12= -A21)

double xz; xzcomponentofthetensor(A,3= –A31)

double yz; yzcomponentofthetensor (A23= -A32)

2.4.2 Special Member Functions

AntiTensor (void) ;

Samplecode:

AntiTensor A; // Construct an uninitialized

// AntiTensor

DefaultconstructorforkwtancesoftheclassAnt iTens or.

AntiTensor (const double, const double, const double) ;
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Sample co&:

AntiTensor A(-2. , -3. , -l. );

Construct an antisymmetric tensor with the given components. The second and
third arguments are omitted in 3-D.

AntiTensor (const AntiTensor&) ;

Sample code:

AntiTensor a;

AntiTensor b = a; // Construct and initialize

ThisisthecopyconshwctorforobjectsofclassAntiTensor.It is defined mainly
to enhance vectorization on CRAY computers.

AntiTensor& operator= (const AntiTensor&) ;

Sample code:

AntiTensor a, b;

a=b;

This is the assignment operator for objects of class AntiTensor. It is defined
mainly to enhance vectorization on CIWY computers.

Indicia[ notation: A,2

double XY (void) const;

symbolic notation: 3Aj

Sample co&:

AntiTensor A;

printf (“The XY component of A is %f”, A. XY() );

double XZ (void) const;

symbolic notatwn: 2A? Indiciai notation: AlB

Sample co&:
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AntiTensor A;

print’f (“The X2 component of A is %f”, A. XZ() );

double YZ (void) const;

symbolic notation: JA ? Indiciai notation: AZJ

Sample code:

AntiTensor A;

printf(’’The YZ component of A is %f”, A.YZ());

void XY(const double) ;

Symboliciwtution: None Indicial notation: Alz+-s

Sample co&:

AntiTensor A;

A.XY(3.) ; // Set XY component of A to 3.

void XZ(const double) ;

Symbolic notation: None lndicial notation: A1~-s

Sample code:

SymTensor A;

A.XZ(3. ); // Set XZ component of A to 3.

void Y’z(const double) ;

Symbo[ic notation: Nmw lndiciul notation: Az~-+s

AntiTensor A;

A.YZ(3. ); // Set YZ component of A to 3.
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Provide access to components of an antisymmetric tensor through a functional in-
terface. The functions corresponding to off-diagonal z terms do not exist in the 2-
D version of the lihrwy, since these components always wmish in 2-D finite ele-
ment codes.

2.4.3 Utility Functions

int fread (Anti Tensor&, FILE* 1;

int fwrite (const Anti Tensor, FILE*) ;

int fread (AntiTensor*, int, FILE*) ;

int. fwrite (const Anti Tensor*, const int, FILE*) ;

Sample co&:

AntiTensor a, b, c[2], d[5];

FILE* InFile, Out File;

fread (a, InFile) ;

fread (c, 2, InFile);

fwrite (b, OutFile);

fwrite (d, 5, OutFile);

Theseoverloadsprovideaconvenientintefidcetothefreado and fwriteo

Iibraryfunctionsforbinaryinput/output.

The,sefunctions were written to be as consistent as possible with thestanclarci
freado and fwriteo functions.Thus,theyarefriendsratherthanmember
functions,andthektegerreturnedisthenumber ofobjectsreadorwritten.
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2.5 operator overload Functions

Vector operator -(void) const;

Synlbc]lictlotuti(Jt~: –i Indickrl notation: –(l,

‘iector a, b;

a= -b ;

Return the opposite of a vector.

Tensor operator- (void) const;

.9JrmTensor operator- (void) const;

Ant.iTensor operator– (void) const;

,TynllJt]!icnotation.: -A Indicial twtution: –Aij

Somple code:

Tensor A, B;

A = -B;

Returntheoppositeofatensor.

Vector operator* (const Vector, const double) ;

Vector operator* (const double, const Vector) ;

Syrnbolicnotation :21: Indiciul notation: UiC

Sumplerode:

Vector a, b;

double c;

a =b * c;

Return theproduct ofascalarancla vector. 1’hisoperation commutes (ascan bc
seen from itsindicial representation) butC++makes no assumptions aboutcom-
mutivity of operations; hence. both orderings must be defined. C++ does assume
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the usual rules of associativity for overloaded operators (thus a* b * c means

(a*b) *cor (i).~)~).

Vector& operator*= (const double) ;

Symbolic notation: h + 2C Indicial notation: ai e ait

Sample code:

Vector a;

double c;

a *= c;

Replaceavectorby itsproductwithascalar.

Vector operator/ (const Vector, const double) ;

Symbolic notation: ii/c Indicial notation: ai/c

Sample co&:

Vector a, b;

double c;

a = b/c;

Return the quotient of a vector with a scalar. The case c = O results in a divide-
by-zero error, which is handled differently on different computers.

Vector& operator /=(const double) ;

Symbolic notution: 2 + Z/c Indicial notation: Ui6 ai/c

Sample code:

Vector a;

double c;

a /= c;

Replacea vectorby itsquotientwitha scalar.The casec = O resultsina dhMe-

by-zero error, which is handled differently on different computers.
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double operator* (const Vector, const Vector) ;

Symbolic ~wtution: ;*; Indiciul notution: Uihi

Sumple code:

Vector a, b;

double c;

c=a * b;

Returnthedotorinnerproductoftwo vectors.

Tensor operator%(const Vector, const Vector) ;

Symbolic notation :~@~ Indicia! notation: uibj

Sample code:

Vector a, b;

Tensor c;

c = a %b;

Returnthe tensor orouterproductof twovectors. The operator ’%’represen ~sthe
modulo operation when applied to integers. It was selected to represent theouter

productofvectorsbecausethecompilerassignsitthesame precedenceasmulti-

plication.

Vector operator+ (const Vector, const Vector) ;

Symbolic tmtution: ;+; ftufkitd notation: ai + bi

Sample code:

Vector a, b, c;

a= b+c;

Return the sum of two vectors.
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Vector& opera hor+=(const Vectorj ;

Symbolic notation: A+-;+L Indici(ll notation: ai +- ai + hi

Stlmple txx.k:

Vector a, b;

a += b;

Replacea vector by its sum with i.mother vector.

Vector operator–(const Vertor, ronst VeclIC:r!;

,Yymbolicrwtation: 2-; [ndicitil notation: Ui– bi

Sample code:

Vector a, b, c;

a= b–c;

Returnthedifferenceoftwo vectors.

Vector& operator -=(const. Vector) ;

Symbolic notation: h G L - ~ In.dicid n.otution: Ui.+ ai – bi

Sample code:

Vector a, b;

a —= b;

Replace a vector by its difference with a vector.

Tensor operator’ (const Tensor, const double) ;

SymTensor operator* (const SymTer Lsor, const double) ;

AntiTensor operator* (const AntiTer,sor, const double) ;

Tensor operat-ol-*(const chubie, cons~. Terls:~l);

SymTensor operator* (c~nsL double, const SymTensorj ;

AIIti’T’eIISC)r o~eI”iltor*(c!onst doII]jle,can~t ~nt..~’ren~or);
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Symbolic notation: A c Indiciai notation: AijC

Sample co&:

Tensor A, B;

double c;

B= A*c;

Returntheproductof a tensor with a scalar.

Tensor& operator* =(const double) ;

SyrnTensor& operator’=(const double);

AntiTensor& operator*=(const double);

Symboiic notation: Ai-Ac Indiciai ?wtation: Aij+ Aijc

Sample code:

Tensor A;

double c;

A *= c;

Replacea tensorby itsproductwitha scalar,

Tensor operator/(const Tensor, const double) ;

SymTensor operator/(const SyrnTensor, const double);

AntiTensor operator/(const AntiTensor, const double) ;

Symbolic notation: A/c Indicialnotation: A1j/c

Sampleco&:

Tensor A, B;

double c;

B = A/c;

Retumthe quotientofatensorwithascalar.Thecasec =Oresultsinaclivicle-

by-zeroerror,whichishandleddifferentlybydifferentcomputers.
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Tensor operator/ =(const double) ;

SymTensor& operator/ =(const double) ;

AntiTensor& operator/=(const double) ;

Symbolic notation: Ai-A/c Indiciainotation: Aij&Aij/c

Sampiecode:

Tensor A;

double c;

A /= C;

Replaceatensorby itsquotientwithascalar.The casec= oresultsinaclivide-

by-zero error, which is handled differently by different computers.

Vector operator* (const Tensor, const Vector) ;

Vector operator* (const AntiTensor, const Vector) ;

Vector operator* (const SymTensor, const Vector) ;

Symbo[icnotution: A; lndicial notation: Aijbj

Sample code:

Tensor A;

Vector b, c;

c=A*b;

Return the result of left-multiplying avectorby a tensor. There are three cases,
corresponding to the three varieties of tensor implemented in PHYSLIB; all are
identical innovation and usage, however.

Vector operator* (const Vector, const Tensor) ;

Vector operator* (const Vector, const AntiTensor) ;

Vector operator* (const Vector, const SymTens,or) ;

Symboiic notation: iB I#ldit’iai tlotatitJrl:ajBji

Sample co&:
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Vector a;

Tensor b, c;

c=a ‘ b;

Returntheresultofright-multiplyinga vectorby atensor,

Tensor operator* (const

Tensor operator* (const

Tensor operator* (const

Tensor operator* (const

Tensor operator* (const

Tensor operator* (const

Tensor operator*(const

Tensor operator* (const

Symbolicnotution :AB

Samplecode:

Tensor A, B, C;

C =A * B;

Tensor, const Tensor) ;

SymTensor, const Tensor) ;

Tensor, const SymTensor) ;

SymTensor, const SymTensor) ;

AntiTensor, const Tensor) ;

Tensor, const AntiTensor) ;

AntiTensor, const SymTensor) ;

SymTensor, const AntiTensor) ;

Indicial twtation: AijBjk

Return theproduct ofatensor witha tensor.

Tensor operator+(const Tensor, const Tensor) ;

Tensor operator+(const SymTensor, const Tensor) ;

Tensor operator+(const Tensor, const ,SymTensor) ;

SyrnTensor operator+(const SymTensor, const SymTensor);

Tensor operator+(const AntiTensor, const Tensor) ;

Tensor operator+(const Tensor, const AntiTensor) ;

Tensor operator+(const AntiTensor, const SymTensor) ;

Tensor operator+(const SymTensor, const AntiTensor) ;

AntiTensor operator+ (const AntiTensor, const AntiTen-

sor) ;
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Symbolic notation: A + B !ndicid notation: Aij + Bij

Sample code:

Tensor A, B, C;

C= A+B;

Returnthesum of two tensors.

Tensor& operator+= (const Tensor) ;

Tensor& operator+ .(const SymTensor) ;

SymTensor& operator+=(const SymTensor) ;

Tensor& operator+=(const AntiTensor) ;

AntiTensor& operator+=(const AntiTensor);

Symbolic notation :Ai-A+B ]ruficiaf notution: Aij + Ail+ Bij

Sarnplf?code:

Tensor A, B;

A += B;

Replaceatensorby itssum withanothertensor.

Tensor operator–(const Tensor, const Tensor) ;

Tensor operator- (const SymTensor, const Tensor) ;

Tensor operator- (const Tensor, const SymTensor) ;

SymTensor operator-(const SymTensor, const. ~ymTen:~or) ;

Tensor operator-(const AntiTensor, const ‘[(”l”lSOr) ;

Tensor operator- (const Tensor, :;onst AntiTensor);

Tensor Operator-(const AntiTcnsor, const SymTensou) ;

Tensor operator-(const SymTensor, COP.SK. A~:l:~T~l~.:.~l);

AntiTensor operator– (const lWtiTe~i:;or, const Ant.iTen-

sor) ;

Symbolienotation :A-B indicial notation: A,j - Ilij
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Sampk code:

Tensor A, B, C;

C= A-B;

Returnthedifferenceoftwo tensors,

Tensor& operator- =(const Tensor) ;

Tensor& operator-=(const SymTensor) ;

SymTensor& operator-=(const SymTensor) ;

Tensor& operator-=(const AntiTensor);

AntiTensor& operator-=(const AntiTensor);

Symbolic notation: A~A -B Indicia~notation: Aij+Aij-Bij

Sampkc ode:

Tensor A, B;

A -= B;

Replaceatensorbyitsdifferencewithanothertensor.
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2.6 Methods

Vector Cross (const Vector, const Vector) ;

Symbolic notation: h x; Indicial notation: cijkajbk

Sample code:

Vector a, b, c;

c = Cross (a, b);

Vector or cross product of two vectors. The symbol Eijk is the permutation sym-

bol, which is O if any of the i, j, or k are equal, 1 if they are an even permutation
of the sequence 1, 2, 3, and -1 if they are an odd permutation of the sequence 1, 2,
3. For example, &lzz= O; E123 = 1; and E213 = –1. The cross product is distributive

and associative but not commutative.

Vector Dual (const Tensor) ;

symbolicnotation: Dual (A) Indicia[ notation: EijkAjk

Sample co&:

Tensor A;

Vector b;

b = Dual(A) ;

Any tensorA can be split into a symmetric part ~ (A + AT) and an antisymmelric

part ~(A-AT). The dual of a tensor is a vector which depends uniquely on its

antisymrnetric part,

AntiTensor Dual

Symbolic notation:

Sample code:

Vector a;

(const Vector) ;

Dual(~) Indicial notation: Eijk;k

AntiTensor B;

B = Dual(a) ;
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Dual of a vector. It can be proved that DuaI(Dual(ti)) = Z?, The concept of the dual

is closely related to the cross product, since ~Dual(2) = ii x ~.

double Norm (const. Vector) ;

Symlmlic notation: 161 Indicial notation: %

Sample code:

Vector a;

double b;

b = Nor?n(a);

Returns the magnitude or norm of a vector. This is calculated as the square root
of the dot product of the vector with itself.

double Norm(const Tensor) ;

double Norm(const SymTensor) ;

double Norm(const Anti Tensor) ;

symbolicnotation: 1AI Indicial flotation: G

Sample code:

Tensor A;

double c;

c = Norm(A) ;

Returns the norm of a tensor. This is calculated as the square root of the scalar
product of the tensor with itself.

double DeL (const Tensor) ;

double Det (const SymTensor) ;

Symbolic notution: da [A] Indiciul notation: ~ E E
6 ij~ ‘m”

AilAjmAk,,

Sample code:

Tensor A;
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double c;

c = Det (A);

Determinantofatensor.[tisalwayszeroforanantisymmetrictensor.

Tensor Inverse (const Tensor) ;

SymTensor Inverse (const SymTensor) ;

Symboiic notation: A-l

!hn@e code:

Tensor A, B;

B = Inverse(A);

inverseof a tensor. If the tensor is singular, a divide-by-zero error will result
(which may be ignored on machines using the IEEE floating point standard). An-
tisymmetric tensors are always singular.

double Tr (const Tensor) ;

double Tr(const SymTensor) ;

Symbolic notution: TrA Indiciul notution: Akk

Sample code:

Tensor A;

double c;

c = Tr (A);

Trace of a tensor. The trace of an antisymmetrk tensor is always zero.

Tensor Trans(const Tensor) ;

Symboiic notation: AT Indicia! mmltion: Ajk

Sumple code:

Tensor A, B;

B = Trans (A);
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Transpose of a tensor. By definition, the transpose of a symmetric tensor is the
tensor, while the transpose of an antisymmetric tensor is the opposite of the tc.n-
sor.

SymTensor Sym(const Tensor) ;

SymbolicIwt<itl”on: $ (A + A‘) fn.diciu[ notalion: ~ (Aij + Aji)

Sampk code:

Tensor A, B;

B = Sym(A) ;

Symmetric part of a tensor.

AntiTensor Anti.

Symbolic notation:

Sample code:

(c!onst Tensor) ;

~ (A - AT) ]ndicid notution: ~ (Aij - Aji)

Tensor A, B;

B = Anti(A) ;

Antisytnmetricpartofa tensor.

double Colon (const

double Colon (const

double Colon (const

double Colon (corlst

double Colon (const

double Colon (const.

double Colon (const

Symbolic notation: A: B

Su??tph’cod?:

Tensor, const Tensor) ;

Tensor, const SyrnTensor) ;

SymTensor, const Tensor) ;

SyrnTensor, const SymTensor) ;

Tensor, const AntiTensor) ;

Ant.iTensor, const Tensor) ;

Ant iTensor, const AntiTensor) ;

fndiciuf n.otution: AijBij
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Tensor A, B;

double c;

c = Colon (A, B);

Innerorscakuproductoftwo tensor,also written Tr(A~B). The scalar product of
asymmetric and an antisymmetric tensor is always zero.

Tensor Deviator(const Tensor) ;

SymTensor Deviator(const SymTensor) ;

Symbolic notation: A-~Tr(A)l Indiciui notation: Aij-~Akk6ii

Sampkcode:

Tensor A, B;

B = Deviator(A);

Deviatoricpartofatensor.Thetensor1 istheidentityknsor,whichistheunique

tensorthattransformsany vector into itself and whose components are represent-
ed by the Kronecker delta tiij. The deviator of an antisymrnetric tensor is the ten-

sor itself.

double It (const Tensor&) ;

double It (const SymTensor&) ;

double It (const AntiTensor&) ;

Symbolic notation: 1, = Tr(A) Indicial notation: Akk

Sample code:

Tensor A;

double c;

C = It(A);

double IIt(const Tensor&) ;

double IIt(const SyrnTensor&) ;

double IIt(const AntiTensor&) ;
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Symbofic notation: II, = ~ (1A 12- (TrA )‘) IndiciU/ WatiOn: ~ (Ai#ij - (AJ 2,

S(mlple(“(xii’:

Tensor A;

double c;

C = IIt (A);

double IIIt(const Tensor&) ;

double IIIt(const SymTensor&) ;

double IIIt(const AntiTensor&);

Symbolic notation: ~1, = DetA Indicial notation: &ijkE,mnAilAjmAk~

Sample code:

Tensor A;

double c;

c= IIIL(A) ;

Scalarinvariantsofatensor.Thesearethecoefficientsappearinginthecharac-

teristicequationofatensor,They aretheonlythreeindependentscalarsthatcan

beformedina frame-independentmanner from a single tensor; all other scalars
that can be formed from a tensor are functions of the scalar invariants.

The first invariant is a synonym for the mace; the third is a synonym for the deter-
minant. Only the second invariant is nonzero for an antisymmetric tensor.

The characteristic equation itself takes the form

L3– I, A2– II IX-111, = L1 (29)

and its roots are the principal values of the tensor.

Tensor Eigen (const SymTensor, Vector&) ;

This function returns the orthonormal tensor whose columns are the eigenvectors
of the given symmetric matrix. The principal values are placed in the vectorspec-

ifiedby the second argument. Thus, if

A = Eigen(B, Ci) (30)
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then

D = ATBA (31)

is a diagonal tensor whose elements are given by the vector ei.

2.7 Predefine Constants

const int DIMENSION = 3 ;

This is an integer constant giving the dimensionality of the library. It is defined to
be equal to 2 if the 2-D version of the library is being used.

extern const Vector ZeroVector;

extern const Tensor ZeroTensor;

extern const Anti Tensor ZeroAntiTensor;

extern const SymTensor ZeroSymTensor;

These are objects of the various classes whose components are all zero.

extern const Tensor Identity Tensor;

extern const SymTensor IdentitySymTensor;

Theseareobjects ofthegivenclasses correspondingto the identity tensor, which
is the tensor that transforms anyvector into itself. Theoff-diagonal components
are zero and the diagonal components are equal to one in any coordinate system.
The identity tensor is symmetric and is given in both symmetric and full tensor
representations.
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3. Using the PHYSLIB classes

The classes defined in PHYSLIB are essentially new arithmetic types analogous to the
predefine int, float, and double types. Their use is illustrated by the program
fmgrnent below:

#include “physlib. h” // The example is 3-D

/*...*/

const Tensor One (l., O., 0.,

0 1., 0.,.1

0 0., l.);.1

Tensor GradVel; // Velocity gradient

SymTensor Deformation, deformation, Stretch, Stress;

AntiTensor W, Omega;

Vector omega;

/* . . . */

Deformation = Sym(GradVel);

W = Anti(GradVel);

/’ Integrate rotation and stretch tensors ‘/

omega = 2. *Inverse (Tr(Stretch) *One - Stretch) *

Dual (GradVel*Stretch) ;

Omega = 0.5*Dual(omega) ;

Rotation . Inverse(One - 0.5*delT*Omega) *(One +
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O . 5*delT*Omega) ‘Rotation;

Stretch +=

/’ Calculate
stress *I

Sym(delT’ (GradVel*Stretch-Stretch*Omega)) ;

unrotated deformation and determine rotated

deformation = Sym(Trans (Rotation) *Deformation*

Rotation) ;

Stress = Sym(Rotation *

ComputeStress (deformation, delT) *

Thisparticularprogramfragmentistakenfromtheintemal

Trans(Rotation)) ;

forcesroutineinRHALE#.

Thevelocity gradient isdecomposed into itsrotation and stretch rate components, thero-
tationandstretch areupdatedtothe newtirne,andthe deformation rate isrotatedtothe
material configuration for the calculation of the new stress (which isdonein the user-de-
fined routine SymTensor ComputeStress (SymTensor&, double) ).The new

stressisthen rotated back to the laboratory configuration.

3.1 Useless Operations

Certainoperations are mathematically well-defined but useless. For example, the n-ace or
the detenni.nant of an antisymmetic tensor is well-defined but trivially zero. The trans-
pose of a symmetric tensor is itself. These operations are not explicitly defined in
PHYSLIB, but if the programmer were to write code such as

Antitensor a;

double b;

/* . . . */

b = Tr(a);

thecodewouldcompileandrunnormally.The compilerrecognizesthatthereisastandard

conversionfromAnt iTensor toTensor. Thisconversionk calledfora andtheresult

ispassedtoTr (Tensor), whichreturnsthecorrectvalueofO.

Obviously,programmersshouldavoidsuchuselessconstructs,sincetheyneedlesslycon-
sume time and memory. Some users may wish to comment out the standard conversions
responsible for permitting useless code.
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Conclusion

PHYSLIB defines vector and tensor classes that are fundamental to the RHALE++ pro-
gramming effort, but which are general and should be useful in many scientific applica-
tions.

These classes are fundamental components of field classes that represent vector and tensor
fields ot’ various types relevant to finite element calculations. These are essentially smart
arrays of vectors or tensors with corresponding operations and methods. The arrays are de-
fined on a domain represented by a mesh class. Calculus operations such as divergence or
gradient are defined in these libraries.

These field classes which utilize the PHYSLIB classes are the subject of a future docu-
men t.
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Index of Operators and Functions

A
AntiTensor Anti(const Tensor) 53
AntiTensor Dual(const Vector) 50
AntiTensor operator-( const AntiTensor, const AntiTensor) 48
AntiTensor operator-( void) 41
AntiTensor oper~tor*(cunst AntiTensor, const double) 44
AntiTensor operator* (const double, const AntiTensor) 44
AntiTensor operator+ (,const AntiTensor, const AntiTensor) 47
AntiTensor operator/(const AntiTensor, const double) 45
AntiTensor& operator* =(const double) 45
AntiTcnsor& operator+= (const AntiTensor) 48
AntiTe.nsol-& oper~tor/=(const double) 46
AntiTensor& operator= (const AntiTensor&) 3K
AntiTensor& operator-= (const AntiTensor) 49
AntiTensor(const ,4ntiTensor&) 38
AntiTensor(const double, const double, const double) 37
AntiTensor(voici) 37

D
doubleColon(constAntiTensor,constAntiTensor)53
doubleC’olon(constSymTenscn-,consrSymTensor)53
double Colon(const Tensor, const Tensor) 53
double Det(consl SymTensor) 51
double Det(const Tensor) 51
double Illt(const AntiTensor&) 55
double lIIt(const SymTensor&) 55
double IIlt(const Tensor&) 55
double Ilt(const AntiTensor&) 54
double Ilt(.const SynlTensor&) 54
double Ht(const Tensor&) 54
double [t(const AntiTensor&) 54
double It(const SymTensor&) 54
doub[e It(const Tensor&) 54
double Norm(const Vector) 51
double opcrutor*(ccmst Vector. const Vector) 43
double T1-(const SymTensor) 52
double “rr(const Tensor) 52

double X(void) 22

double XX(void) 27.33
double XY(const double) 39
double XY(,void) 27,34, 3’?
double XZ(cxmst double) 39
double XZ(voicl) 28,34,38
double Y(voici) 23
double YX(void) 28
double YY(void’) 28,34
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double YZ(const double) 39
double YZ(void) 28,34,39
double Z(void) 23
double ZX(void) 28
double ZY(void) 29
double ZZ(void) 29,35

I
int fread(AntiTensor&, FILE*) 40
int fread(AntiTensor*, int, FILE*) 40
int fre~d(SymTensor&, FILE*) 36
int fread(SymTensor*, int, FILE*) 36
int fread(Tensor&, FILE*) 31
int fread(Tensor*, int, FILE*) 31
int fread(Vector&, FILE*) 24
int fretidI(Vector*, int, FILE*) 24
int fwrite(const AntiTensor*, const int, FILE*) 40
int fwrite(const AntiTensor, FILE*) 40
int fwrite(const SymTensor*, const int, FILE*) 36
int fwrite(const SytnTensor, FILE*) 36
int fwrite(const Tensor*, const int, FILE*) 31
int fwrite(const Tensor, FILE*) 31
int fwrite(const Vector*, const int, FILE*) 24
int fwrite(const Vector, FILE*) 24

s
SymTensor Deviator(const SymTensor) 54
SymTensor Inverse(const SymTensor) 52
SymTensor operator-(const SymTensor, const SymTensor) 48
SymTensor operator-( voicf) 41
SymTensor operator* (const double, const SymTensor) 44
SymTensor operator* (const SymTensor, const double) 44
SymTensor operator+ (const SymTensor, const SymTensor) 47
SymTensor operator+=(const SymTensor) 48
SymTensor operator/(const SymTensor, const double) 45
SymTensor Sym(const Tensor) 53
SytnTensor& operator*=(const double) 45
SytnTensor& operator/= (const double) 46
SymTensor& operator= (const SymTensor&) 33
SymTensor& operator-=(const SymTensor) 49
SymTensor(const double, const double, .,. , const double) 33

SymTensor(const SymTensor&) 33
SymTensor(void) 32

T
Tensor Deviator(const Tensor) 54
Tensor Eigen(const SymTensor, Vector&) 55
Tensor Inverse(const Tensor) 52
Tensor operator% (const Vector, const Vector) 43
Tensor operator-(const AntiTensor, const SymTensor) 48



Tensor operator-(const AntiTensor, const Tensor) 48
Tensor operator-(const SymTensor, const AntiTensor) 48
Tensor operator-(const SymTensor, const Tensor) 48
Tensor (>perator-(collst Tensor, co[lst AntiTellsor) 48
Tensor operator-(const Tensor, const SymTensor) 48
Tensor operi.itor-(const Tensor, const Tensor) 48
Tensor operator-( void) 41
Tensor operator*(const AntiTensor, const SymTensor)47
Tensor operator*(const AntiTensor, const Tensor)47
Tensor operator*(const double, constTensor) 44
Tensor operator*(const SymTensor, const AntiTensor)47
Tensor operator* (const SymTensor, const SymTensor) 47
Tensor operator* (const SymTensor, const Tensor) 47
Tensor operator* (const Tensor, const AntiTensor) 47
Tensor operator* (const Tensor, uonst double) 44
Tensor operator*(const Tensor, const SymTensor) 47
Tensor operator*(const Tensor, const Tensor) 47
Tensor operator+(const AntiTensor, const SymTensor) 47
Tensor operator+(const AntiTensor, const Tensor)47
Tensor operator+(const SymTensor, const AntiTensor)47
Tensor operator+(const S~mTensor, const Tensor)
Tensor operator+(const Tensor, const AntiTensor)
Tensor operator+(const Tensor, const SymTensor)
Tensor operator+(const Tensor, constTensor) 47
Tensoroperator/(const Tensor, constciouble) 45

47
47
47

Tensor operator/=(const double) 46
Tensor Trans(const Tensor) 52
Tensor& operator* =(const double) 45
Tensor& operator+= (const AntiTensor)
Tensor& operator+= (const SymTensor)
Tensor& operator+=(const Tensor) 48

48
48

Tensor& operator-= (const AntiTensor) 49
Tensor& operator= (const AntiTensor) 27
Tensor& operator-= (const SymTensor) 49
Tensor& operator=(const SymTensor) 27
Tensor& operator=(const Tensor&) 26
Tensor& operator-= (const Tensor) 49
Tensor(const AntiTensor) 26

Tensor(const double, const double, .... const double) 25
Tensor(const SymTensor) 26
Tensor(const Tensor&) 26
Tensor(void) 25

v
Vector Cross(const Vector, const Vector) 50
Vector Dual(const Tensor) 50
Vector operator-(const Vector, const Vector) 44
Vector operator-(void) 41
Vector operator* (const AntiTensor, const Vector) 46
Vector operator* (constdouble, const Vector) 41
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Vector operator* (const SymTensor, const Vector) 46
Vector operator* (const Tensor, const Vector) 46
Vector operator* (const Vector, const AntiTensor) 46
Vector operator* (const Vector, const double) 41
Vector operator* (const Vector, const SymTensor) 46
Vector operator* (const Vector, const Tensor) 46
Vector operator+ (const Vector, const Vector) 43
Vector operator/(const Vector, const double) 42
Vector& operator”= (const double) 42
Vector& operator+=(const Vector) 44
Vector& operator/=(const double) 42
Vector& operator= (const Vector&) 22
Vector& operator-= (const Vector) 44
Vector(const double, constdouble, constdouble) 22
Vector(const Vector&) 22
Vector(void) 22
void XX(const double) 29,35
void XY(const double) 29,35
void XZ(const double) 30,35
void YX(const double) 30
void YY(const double) 30,35
void YZ(const double) 30,36
void Z(const double) 24
void ZX(const double) 30
void ZY(const double) 31
void ZZ(const double) 31, 36

x
X(const double) 23

Y
Y(const double)23

z
Z(void) 22
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